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Multiparticle simulation of adiabatic excitation of longitudinal parametric resonances
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In order to further understand phenomena observed during studies of adiabatic excitation of longitudinal
bunch shape oscillations [M. Bai et al., Phys. Rev. ST Accel. Beams 3, 064001 (2000)], we have devel-
oped a simulation using a one-turn map. In this report we will present the physical foundations for the
simulation and the methods used in the simulator. We will present simulation results using parameters of
actual experiments, along with the corresponding experimental results.
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I. INTRODUCTION

In Ref. [1] it was shown that, by exciting longitudinal
bunch shape oscillations adiabatically, longitudinal emit-
tance can be preserved and the driven bunch shape oscilla-
tions can be maintained for a long period. To understand
the phenomena observed during our studies we developed
a single particle dynamics simulation which is able to pre-
cisely probe the behavior of particle distributions. In this
report we will present data collected over multiple regimes
of longitudinal parametric resonances and simulation re-
sults corresponding to that data.

The physical foundations for the simulation are given in
the discrete synchrotron equations for a stationary bucket,
in which the amplitude of the rf voltage is modulated. The
synchrotron motion can be described using the conjugate
phase space coordinates �f, d �

hh

ns

Dp
p �, where f is the

particle phase relative to the synchronous particle, h is the
harmonic number, h �

1
g

2
t

2
1

g2 is the phase slip factor,
ns is the synchrotron tune at zero amplitude without modu-
lation, and p is the particle momentum. The synchrotron

tune is given by ns �
q

hjhjeV
2pb2E , with e being the elemen-

tary charge, V the gap voltage, b the relativistic factor, and
E the particle energy. The discrete synchrotron equations
for a stationary bucket above transition can then be written
as [2,3]

fn11 � fn 1 2pnsdn11 ,

dn11 � dn 1 2pns�1 1 e sin�nmun11 1 x�� sinfn ,
(1)

where e is the modulation percentage of the unperturbed rf
voltage, nm is the modulation tune, x is the initial modu-
lation phase, and the orbital angle u is a timelike variable.
Equations (1) correspond to the Hamiltonian

H �
ns

2
d2 1 ns�1 1 e sin�nmu 1 x�� �1 2 cosf� .

(2)

The canonical transformation for particles within a
bucket f �

p
2J cosc, d � 2

p
2J sinc to action-angle

variables �J, c� allows going into a rotating coordinate
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frame. To go into a coordinate system that rotates around
the origin with half the modulation tune we use the canoni-
cal transformation J � J̃, c̃ � c 2

nm

2 u 2
3p

4 . The
new Hamiltonian has terms oscillating at nm, 2nm, . . . ,
which average to zero over time, and the time averaged
Hamiltonian in this coordinate system is [4]

�H̃� �

µ
ns 2

nm

2

∂
J̃ 2

ns

16
J̃2 1

ns

4
eJ̃ cos 2c̃ . (3)

Since J � J̃ we use J instead of J̃ in the following.
The investigation of fixed points of the Hamiltonian (3)

leads to the following result:
(i) If ns�2 1

e

2 � , nm, the origin J � 0 is the only fixed
point, a stable one.

(ii) If ns�2 2
e

2 � , nm , ns�2 1
e

2 �, there is one un-
stable fixed point at the origin and two stable fixed points
at J � 8�1 2

nm

2ns
� 1 2e and c̃ � 0, p.

(iii) If nm , ns�2 2
e

2 �, there is a stable fixed point
at the origin, two more stable fixed points at J � 8�1 2
nm

2ns
� 1 2e and c̃ � 0, p, and two unstable fixed points at

J � 8�1 2
nm

2ns
� 2 2e and c̃ �

p

2 , 3p

2 .
The three cases are illustrated in Fig. 1 where we used

the Hamiltonian (3) and the parameters ns � 0.0005 and
e � 0.45. Figure 1(a1) shows the situation with nm �
0.0018 above and far away from the resonance interval
�ns�2 2

e

2 �, ns�2 1
e

2 ��. The phase space trajectories are
undisturbed. In Fig. 1(a2) the modulation tune nm �
0.0011 is still above but close to the resonance interval.
The trajectories in phase space are distorted. Figure 1(b)
shows the phase space with nm � 0.001 inside the reso-
nance interval. The unstable fixed point at the origin and
the two stable fixed points are clearly visible. In Fig. 1(c1)
the modulation tune nm � 0.000 87 is below but close
to the resonance interval. The appearance of a stable fixed
point at the origin and two unstable fixed points above and
below it becomes visible. Figure 1(c2) shows the phase
space with nm � 0.0008 below and farther away from the
resonance interval.

When the amplitude of the modulation is large, the
approximations of the Hamiltonian (3) are no longer valid,
although it still provides qualitative guidance of the particle
© 2001 The American Physical Society 014001-1
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FIG. 1. Simulated particle trajectories in a surface of a section
of the Hamiltonian (3) with the parameters ns � 0.0005 and
e � 0.45. In (a1) the modulation tune nm � 0.0018 is above
and far away from the parametric resonance interval, in (a2) it is
still above but with nm � 0.0011 close to this interval. (b) shows
the situation with nm � 0.001, when the parametric resonance is
excited. (c1) and (c2) depict the cases with nm � 0.000 87 and
nm � 0.0008, respectively, when the modulation tune is below
the parametric resonance and either close or far away from that
interval.

behavior in phase space. To study more extreme condi-
tions we return to the Hamiltonian (2) and track individual
particles.

II. SIMULATION OF LONGITUDINAL MOTION
WITH MODULATED FOCUSING STRENGTH

We used the one-turn map in Eqs. (1) to simulate the
behavior of many particles while incrementing the am-
plitude slowly over many revolution periods. The simu-
lator did not need to include beam loading effects on
the rf voltage since the modulation frequencies fall well
within the bandwidth of the Brookhaven alternating gra-
dient synchrotron (AGS) rf automatic gain control loop.
With loop gains of 17 dB and greater the system does a
very good job at compensation, reducing to better than 1%
any beam loading distortion [5,6]. The simulator did not
014001-2
include space charge effects either, since in the AGS the
longitudinal impedances are small. Even at the relatively
high intensities and short bunch widths we worked with in
our experiments, the space charge effects remain insignifi-
cant. To illustrate this, consider the ratio of the induced
voltage change dVz

dt �
Qbunch

s3
t

p
2p

Zk

n
1

v0
from space charge to

the dVrf

dt � Vrfhv0 of the AGS rf system. Given that v0

is about 2.4 3 106, Zk

n � 6V [7] and Vrfh varies from 6 3

20 000 to 6 3 200 000, for a beam intensity of 5 3 1012

protons per bunch in a st � 50 ns bunch this ratio varies
from about 2 3 1022 to 2 3 1023, respectively. From this
we conclude that the shift in synchrotron frequency is in-
significant [8,9].

Using the parameters of Fig. 1 we mapped out particle
trajectories of a surface of a section of the Hamiltonian (2)
using the one-turn map in Eqs. (1). The results are shown
in Fig. 2. Clearly, the simplified Hamiltonian used to gen-
erate the trajectories shown in Fig. 1 is valid only for small
amplitude oscillations when the modulation tune is well
above twice the synchrotron tune or when the modulation
amplitude is small. The trajectories in Fig. 2(c) show that
chaotic motion exists in the regions that Fig. 1(c) suggests
to be stable regions. Note that the axis labels in Fig. 2 are
changed to reflect the canonical phase space variables, f

and d �
hh

ns

Dp
p , as opposed to the rotating frame action

angle variables, f �
p

2J cosc̃ and d � 2
p

2J sinc̃,
used in Fig. 1.

III. COMPARING SIMULATION RESULTS TO
EXPERIMENTAL RESULTS

We operated Brookhaven’s AGS with one bunch of a
high intensity proton beam at 24 GeV, with a harmonic
number of 6 and an rms bunch area of 4 eV s. The unmodu-
lated gap voltage seen by the beam was 100 kV. These
parameters are summarized in Table I.

In Ref. [1] we describe the experimental conditions for
our experiments. To summarize, we modulated the AGS
rf voltage using a wave form generator that generated a
voltage which was added to the gap voltage setting in the
low level rf. The combined signal was the input to the rf
high level voltage regulation system. In our experiments
we slowly increased the parameter e in Eq. (1) to ensure
adiabaticity.

We took four sample cases from our experiments and
ran simulations using the same parameters. The four cases
are (in all cases ns � 0.000 22 and e � 0.8) (a) the modu-
lation tune is slightly below twice the synchrotron tune,
nm � 0.000 404. All the beam was lost. (b) The modula-
tion tune is above but close to twice the synchrotron tune,
nm � 0.000 472. We observed slow beam loss and emit-
tance growth. (c) The modulation tune is above and farther
away from twice the synchrotron tune, nm � 0.000 499.
We observed no beam loss and no emittance growth.
014001-2
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FIG. 2. Simulated particle trajectories in a surface of a section of the Hamiltonian (2) with the same parameters as given in Fig. 1.
Note that the axis labels are changed to reflect the canonical phase space variables, f and d �

hh

ns

Dp
p , as opposed to the rotating

frame action angle variables, f �
p

2J cos c̃ and d � 2
p

2J sin c̃ , that were used in Fig. 1.
TABLE I. Basic parameters in the AGS experiment.

Parameter Symbol Unit Value

Species · · · · · · p
Energy E GeV 24
Harmonic number h · · · 6
Number of bunches · · · · · · 1
Particles per bunch · · · · · · 5 3 1012

rms bunch area es eV s 4
Slip factor h · · · 0.0122
Gap voltage V0 V 100
Synchrotron tune ns · · · 0.000 22
014001-3
(d) The modulation tune is well above twice the syn-
chrotron tune, nm � 0.000 553.

Figure 3 shows simulated particle trajectories in the
surface of sections of the Hamiltonian (2) for the above
four cases. Figure 4 shows results of tracking 50 000 par-
ticles initially distributed in a Gaussian distribution. The
modulation amplitude e is increased from 0 to 0.8 in ten
synchrotron periods. We used the same synchrotron and
modulation tunes as in Fig. 3. In Figs. 3(a) and 4(a) we
show the phase space before the modulation has reached
full amplitude, since particles are lost very quickly. Also
note that the scales in Figs. 3(a) and 4(a) show a larger
014001-3
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FIG. 3. Simulated particle trajectories in a surface of a section of the Hamiltonian (2). (a) Modulation tune 0.000 404, (b) modu-
lation tune 0.000 472, (c) modulation tune 0.000 499, and (d) modulation tune 0.000 553. All cases are driven with a modulation
amplitude of e � 0.8.

FIG. 4. Tracking simulations starting with 50 000 particles in a Gaussian distribution and using the same parameters as in Fig. 3.
In all cases the parameter e is ramped from 0 to 0.8 in ten synchrotron periods.
014001-4 014001-4
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FIG. 5. Measurements of driven bunch shape oscillations for different modulation frequencies, as seen on a wall current monitor.
(a) Modulation tune 0.000 404, (b) modulation tune 0.000 472, (c) modulation tune 0.000 499, and (d) modulation tune 0.000 553.
In all cases the parameter e is ramped from 0 to 0.8 in ten synchrotron periods.

FIG. 6. Simulated mountain range results of tracking 50 000 particles for each of the cases shown in Figs. 3–5.
014001-5 014001-5
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region of phase space than used for Figs. 3(b)–3(d) and
4(b)–4(d). In Figs. 3(b)–3(d) and 4(b)–4(d) we show the
phase space well after reaching full modulation amplitude.
In Fig. 4 each figure shows a profile of the initial distribu-
tion as well as a profile of the final distribution.

Figure 5 shows the measured mountain range plots for
these four cases. Figure 6 shows simulated mountain
ranges, using 50 000 particles, for each of the above cases.
These simulation results agree very well with the measured
mountain range plots shown in Fig. 5. We attribute the
small remaining discrepancies to a mismatch in the initial
distributions.

IV. SUMMARY

Our simulations of adiabatic excitation of longitudinal
parametric resonances match experimentally obtained data
extremely well over different parameter regimes. Thus the
one-turn map in Eq. (1) that is used in the simulation and
includes only single particle effects is an accurate model
for the parameter regimes of our experiments.
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APPENDIX: SIMULATOR CODE DETAILS

The simulator is composed of fewer than 500 lines of
C++ code and was developed and debugged very quickly.
Individual particles are tracked for many revolutions using
a set of nested loops. First, we define the particle distribu-
tion in phase space, then, for each particle, we track over
a given number of modulation periods and for the number
of revolutions per modulation period. We can either print
out particle coordinates in phase space every modulation
period to get the surface of sections of the Hamiltonian
(2) or just print out the final coordinates after the given
total number of revolutions. We can generate a Gaussian
or uniform beam distribution. We also include the code
for generating mountain range plots, for direct comparison
to actual data. The simulator used well-known techniques
and algorithms. For example, to generate a Gaussian dis-
tribution we did the following:

void getrpart�double mphi, double mdp,

double� rphi, double� rdp�
�
double randth, randphi;

double phi, dp;

double pi�4.0�atan�1.0�;
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�� lrand48 returns a unsigned int

�� between 0 and 2ˆ31

randth��double� �lrand48���2147483647.0�;
randphi��double� �lrand48���2147483647.0�;

�� transform the uniform distribution to

�� a gaussian distribution

phi�0.5�mphi�sqrt�22�log�randphi��;
dp�0.5�mdp�sqrt�22�log�randphi��;
phi�phi�cos�2.0�pi�randth�;
dp�dp �sin�2.0�pi�randth�;

memcpy�rphi, &phi, sizeof�double��;
memcpy�rdp, &dp, sizeof�double��;

	

The application does not generate any graphics, but sim-
ply dumps results into files. We use the xmgr (ACE�gr
[10]) plotting package to display our results. The user
interface is a file input that specifies the synchrotron tune,
the modulation tune, the modulation amplitude, the num-
ber of revolutions per modulation period, the number of
modulation periods to sample over, and the number of
revolutions to ramp the amplitude. Also specified are
various other parameters to control which distribution to
use (including a random seed value for generating the
Gaussian distribution) and to control the mountain range
output.
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